

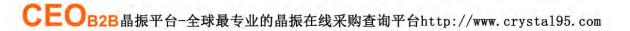
February 2016

- Pletronics' PE99D Series is a quartz crystal controlled precision square wave generator with a PECL output.
- The package is designed for high density surface mount designs.
- Low cost mass produced oscillator.
- Tape and Reel or cut tape packaging.

- 5 x 7 mm LCC Ceramic Package
- Enable/Disable Function on pad 1
- Output frequency is synthesized.
 - Low Jitter

Pletronics Inc. certifies this device is in accordance with the RoHS 6/6 (2011/65/EC) and WEEE (2002/96/EC) directives.

Pletronics Inc. guarantees the device does not contain the following: Cadmium, Hexavalent Chromium, Lead, Mercury, PBB's, PBDE's Weight of the Device: 0.16 grams Moisture Sensitivity Level: 1 As defined in J-STD-020D.1 Second Level Interconnect code: e4


Absolute Maximum Ratings:

Parameter	Unit
V _{CC} Supply Voltage	-0.5V to +4.6V
Vi Input Voltage	-0.5V to V _{CC} + 0.5V
Vo Output Voltage	-0.5V to V _{CC} + 0.5V
I _o Output Current	-50mA

Thermal Characteristics

The maximum die or junction temperature is 155°C

The thermal resistance junction to board is 30 to 50°C/Watt depending on the solder pads, ground plane and construction of the PCB.

February 2016

Part Number:

PE99	45	D	Е	v	-125.0M	-xx	
							Packaging code or blank T250 = 250 per Tape and Reel T500 = 500 per Tape and Reel T1K = 1000 per Tape and Reel
							Frequency in MHZ
							Supply Voltage V _{cc} V = $3.3V \pm 10\%$
							Temperature Range blank = -10 to $+70^{\circ}$ C C = -20 to $+70^{\circ}$ C E = -40 to $+85^{\circ}$ C
							Series Model
							Frequency Stability 45 = ± 50 ppm 44 = ± 25 ppm 20 = ± 20 ppm
							Series Model

Part Marking:

PLE PE99 FF.FFF M • YMDXX

Marking Legend:

PLE = Pletronics *FF.FFF* M = Frequency in MHz *YMD* = Date of Manufacture (year-month-day)

All other marking is internal factory codes

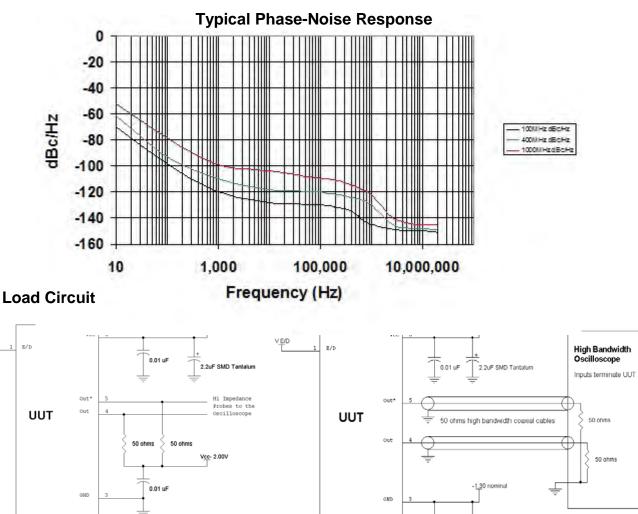
Code	Codes for Date Code YMD																	
Code	4	5	6	7	8	Code	Α	В	С	D	Е	F	G	Н	J	K	L	М
Year	2014	2015	2016	2017	2018	Month	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC

Code	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	G
Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Code	Н	J	К	L	М	Ν	Р	R	Т	U	V	W	Х	Y	Z	
Day	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	

February 2016

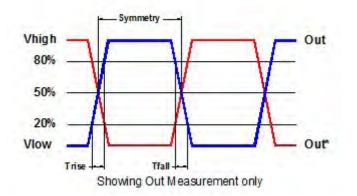
Electrical Specification for 3.30V ±10% over the specified temperature range and the frequency range of 10.9 MHZ to 766 MHZ and 876 MHZ to 1,175MHz

Item	Min	Max	Unit	Condition
Frequency Accuracy "45"	-50	+50	ppm	For all supply voltages, load changes, aging for 1
"44"	-25	+25		year, shock, vibration and temperatures
" 20 "	-20	+20		
Output Waveform		PECL / E	ECL	
Output High Level	2.12	2.49	volts	Referenced to Ground, $V_{cc} = 3.3 V$
	0.82	1.19	volts	Referenced to termination voltage, V_{cc} = 3.3 V
	-1.18	-0.81	volts	Referenced to Vcc, $V_{cc} = 3.3 V$
Output Low Level	1.83	1.99	volts	Referenced to Ground, $V_{cc} = 3.3 V$
	0.53	0.69	volts	Referenced to termination voltage, V_{cc} = 3.3 V
	-1.47	-1.31	volts	Referenced to Vcc, $V_{cc} = 3.3 V$
Output Peak to Peak Level	0.405	1.076	volts	
Output Symmetry	47	53	%	at 50% point of V_{cc} (See load circuit)
Jitter	-	0.6	pS RMS	12 KHz to 20 MHZ from the output frequency
	-	2.8	pS RMS	10 Hz to 20 MHZ from the output frequency
Output T_{RISE} and T_{FALL}	100	300	pS	Vth is 20% and 80% of waveform
V _{cc} Supply Current (I _{cc})	-	90	mA	
Enable/Disable Internal Pull-up	50	-	Kohm	to V _{cc}
V disable	-	0.8	volts	Referenced to pad 3
V enable	2.00	-	volts	Referenced to pad 3
Output leakage $V_{OUT} = V_{CC}$	-50	+50	uA	Pad 1 low, device disabled
$V_{OUT} = 0V$	-50	+50	uA	
Enable time	-	10	nS	Time for output to reach a logic state
Disable time	-	10	nS	Time for output to reach a high Z state
Start up time	-	5	mS	Time for output to reach specified frequency
Operating Temperature Range	-10	+70	°C	Standard Temperature Range
	- 20	+70	°C	Extended Temperature Range "C" Option
	- 40	+85	°C	Extended Temperature Range "E" Option
Storage Temperature Range	-55	+125	°C	


Specifications with Pad 1 E/D open circuit or connected to V_{CC}

V<u>E</u>/D

PE99D Series 3.3 V PECL Clock Oscillators

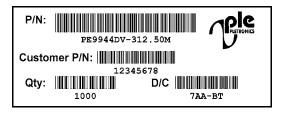

February 2016

0.01 uF

2.2uF SMD Tantalum

February 2016

Reliability: Environmental Compliance


Parameter	Condition
Mechanical Shock	MIL-STD-883 Method 2002, Condition B
Vibration	MIL-STD-883 Method 2007, Condition A
Solderability	MIL-STD-883 Method 2003
Thermal Shock	MIL-STD-883 Method 1011, Condition A

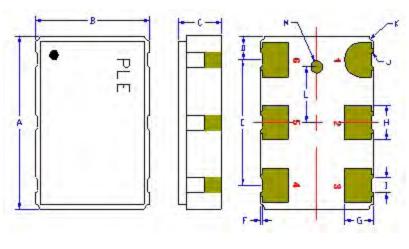
ESD Rating

Model	Minimum Voltage	Conditions			
Human Body Model	2000	MIL-STD-883 Method 3115			
Charged Device Model	1500	JESD 22-C101			

Package Labeling

Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Courier New Bar code is 39-Full ASCII

Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Arial


RoHS Compliant

2nd LvL Interconnect Category=e4 Max Safe Temp=260C for 10s 2X Max

February 2016

Mechanical:

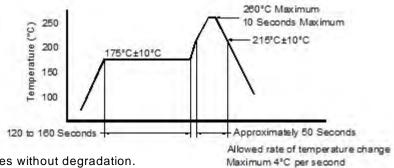
Contacts:

Gold 11.8 to 39.4 µinches (0.3 to 1.0 µm) over Nickel 50 to 350 µinches (1.27 to 8.89 µm)

Center metalized pad "M" on the base is not internally connected.

¹ Typical dimensions

Not to Scale

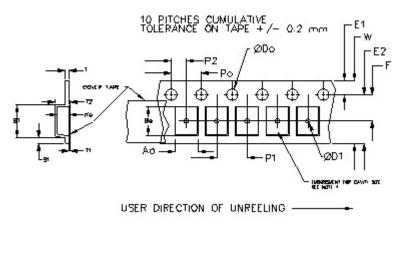

	Inches	mm
А	0.276 <u>+</u> 0.006	7.00 <u>+</u> 0.15
В	0.197 <u>+</u> 0.006	5.00 <u>+</u> 0.15
С	0.067 <u>+</u> 0.010	1.70 <u>+</u> 0.25
D ¹	0.038	0.96
E ¹	0.200	5.08
F ¹	0.004	0.10
G¹	0.050	1.27
H ¹	0.055	1.40
I ¹	0.024	0.60
J ¹	0.004r	0.10r
K ¹	0.008r	0.20r
L ¹	0.089	2.25
M ¹	0.010r	0.25r

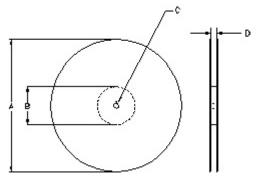
Pad	Function	Note
1	Output Enable/Disable	When this pad is not connected the oscillator shall operate. When this pad is <0.80 volts, the output will be inhibited (high impedance state.) Recommend connecting this pad to V_{cc} if the oscillator is to be always on.
2	No connect	The pad can be connected to Vcc, Ground or left open. This pad is internally connected.
3	Ground (GND)	
4	Output	Both outputs must be terminated and biased for proper operation. The ideal termination is 50 ohms connected to 2.0V below the Supply Voltage.
5	Output*	The outputs become a High Z when disabled and the voltage level is determined by the termination circuitry.
6	Supply Voltage (V _{cc})	Recommend connecting appropriate power supply bypass capacitors as close as possible.

February 2016

Reflow Cycle (typical for lead free processing)

The part may be reflowed 3 times without degradation.


Tape and Reel: available for quantities of 250 to 1000 per reel, cut tape for < 250


Constant Dimensions Table 1										
Tape Size	D0	D1 Min	E1	P0	P2	S1 Min	T Max	T1 Max		
8mm		1.0			2.0					
12mm	1.5	1.5	1.75	4.0	<u>+</u> 0.05					
16mm	+0.1 -0.0	1.5	<u>+</u> 0.1	<u>+</u> 0.1	2.0	0.6	0.6	0.1		
24mm		1.5			<u>+</u> 0.1					

	Variable Dimensions Table 2									
Tape Size	B1 Max	E2 Min	F	P1	T2 Max	W Max	Ao, Bo & Ko			
16 mm	12.1	14.25	7.5 <u>+</u> 0.1	8.0 <u>+</u> 0.1	8.0	16.3	Note 1			

Note 1: Embossed cavity to conform to EIA-481-B

Dimensions in mm Not to scale

		REE	ONS		
А	inches	7.0	10.0	13.0	
	mm	177.8	254.0	330.2	
В	inches	2.50	4.00	3.75	
	mm	63.5	Tape Width		
с	mm	13	width		
D	mm	16.4 +2.0 -0.0	16.4 +2.0 -0.0	16.4 +2.0 -0.0	16.0
	mm			24.4 +2.0 -0.0	24.0
	mm			32.4 +2.0 -0.0	32.0

Reel dimensions may vary from the above

CEOB2B晶振平台-全球最专业的晶振在线采购查询平台http://www.crystal95.com